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ABSTRACT

In order to elucidate the factors responsible for the enhanced diffu-

sion rate of the hydrated electron compared to halide ions, a pseudoclassical

simulation technique that mimics the adiabatic dynamical response of the

electron is applied to halide-like ions in water for different solute-solvent

potential models. Both the adiabatic and classical diffusive behavior are

evaluated and compared to the quantum dynamics of the hydrated electron.

It is shown that the adiabatic response per se is essential, but only partially

responsible for the diffusion rate enhancement of the excess electron. Specific

Ieatures of the solute-solvent interaction potential must also be taken into

account for a realistic description of the electron mobility. These include the

nature of the short range repulsion associated with the spatial confinement

of the excess electron and the partial penetration of the excess electronic

distribution into the first hydration shell. When these effects are also incor-

porated into the pseudoclassical model, both the solvated electron dynamics

and solvation structure are closely reproduced by the model system. "o
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I INTRODUCTION

The dynamics of ions in solution is a topic of wide chemical and biolog-

ical importance. Familiar examples include ionic diffusion in solution, the

transport of ions across membranes, and ionic dynamics in polyionic sys-

tems, such as biopolymers. An accurate molecular description of these and

other inhomogeneous systems is predicated on a detailed understanding of

the dynamics of ions in bulk solutions. One of the most interesting ionic

systems in terms of its basic physics is the hydrated electron (e-q), which

was discovered more than two decades ago.' Since then, the structure and

dynamics of this system have been intensively studied both experimentally

and theoretically.

Several models of electron solvation have been proposed. Currently, both

experiments and computational studies support the so-called cavity model,'

which is based on the idea that the roughly spherical excess electronic wave-

function is solvated in an ion-like manner. Thus, the excess electron ground

state distribution is localized in a cavity surrounded by shells of the solvent,

with those in the inner shell exhibiting preferential OH bond orientation with

respect to the center of the electron distribution in the cavity.2

Despite the similar solvation characteristics, the hydrated electron ex-

hibits a relatively high diffusion rate in relation to its ionic counterparts

(about 2-3 times higher). This specific property of the solvated electron has

been the subject of considerable theoretical speculation and modelling. 2- 6



Transport mechanisms involving tunneling through potential barriers,

adiabatic hopping over large distances, and even Grotthuss-type diffusion

mechanisms have been invoked in an attempt to explain the relatively high

mobility of excess electrons in liquid water. 2 4 However, recent simulation

studies employing adiabatic dynamics,"'6 found that long-range hopping does

not occur, and suggest that in the case of electron diffusion in water, migra-

tion is predominantly polaronic in nature. Similar conclusions appear to

apply to the ammoniated electron.7

The origin of the enhanced electronic diffusion coefficient was attributed

to fundamental differences in the dynamics of electrons and classical ions.5

It was argued that in the electronic system, the charge distribution which

polarizes the local molecular solvation environment is capable of instanta-

neously responding to changes in the local solvent configuration, resulting in

rapid variation of the solvated electron spatial density. In contrast, classical

halide ions are incapable of instantaneously responding to local solvent fluc-

tuations due to inertial effects. For this inertial case, a restoring force would

be provided by the ionic source, causing the solvent to tend to return more

closely to its initial configuration than it would in the electronic case. Nev-

ertheless, this hypothesis as to the origin of the enhanced diffusion rate has

never been demonstrated. One cannot rule out important alternative con-

tributions to the dynamics associated with differences in the short-ranged

interactions between solute and solvent.

In order to examine the contribution of such variations in interactions, one
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must examine the dynamical response of the system to these changes. How-

ever, in accord with the reasoning above, present analytical theories of ion

dynamics in solution8 cannot be expected to explain the diffusive behavior of

the solvated electron. On the other hand, computer simulation of alternative

pseudoclassical models are readily accessible. The precise algorithm used to

implement this concept will be described in the next section.

We will explore ionic motion governed by what we will refer to as "adia-

batic" ion dynamics simulations. In such simulations, the otherwise classical

ion responds instantaneously to changes in solvent configuration and lacks a

classical inertial component in its dynamics. Different ion-solvent interaction

potentials will also be studied, and the results will be compared to analogous

classical MD simulations, as well as to quantum simulation results for e-q.

The comparative results will be used to delineate the features critical to the

observed diffusive transport of the solvated electron.

In Section II, we give the details of our computer simulations. Section III

outlines the different potential functions utilized. The results are presented

and discussed in Section IV. Though our emphasis is on dynamical prop-

erties of the solute, some structural characteristics and energetics resulting

from the different models studied are also included in order to complete the

comparison between electron and pseudoclassical ion simulations. In Section

V, we summarize the results and present our conclusions.

3



II COMPUTATIONAL METHODS

In this section, we describe the simulation protocol and algorithms.

A Classical molecular dynamics simulations

Standard molecular dynamics simulations of one bromide ion and 500

SPC9 water molecules confincd to a cubic box under periodic boundary con-

ditions are performed. The SPC model is chosen to be consistent with our

earlier work.5 In particular, the model Hamiltonian previously developed for

treating the quantum electron is specifically designed to be compatible with

the SPC model for water. The size of the cubic cell (24.66 A) is chosen to

obtain a molecular density of 0.0333 molecules/A 3. The equations of motion

are integrated with a time step of 2 femtoseconds using the Verlet algorithm

combined with the SHAKE algorithm l in order to satisfy the constraints

associated with the rigid water molecules. Long-range interactions are cal-

culated via the Ewald summation method." The particular motivations for

the use of the Ewald sum are discussed below.

For each of the cases studied, the system was allowed to equilibrate for

about 40 picoseconds before production runs were performed; Table I shows

the actual length of each simulation. Every tenth configuration was stored

for analysis.
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B Adiabatic molecular dynamics simulations

For adiabatic quantum MD simulations, the time evolution of the sys-

tem is calculated within the Born-Oppenheimer approximation, so that the

solvent dynamics is followed on the electronic ground state potential energy

surface.5 In our adiabatic MD simulations, this behavior is mimicked by plac-

ing the ion at the minimum of its interaction potential after each timestep of

solvent dynamics. A new solvent configuration is then obtained by solving

the classical equations of motion, accounting for the forces exerted by the ion

as well. A new position for the ion at the potential minimum is subsequently

calculated, and so on.

The ionic potential minimum is found by first performing steepest descent 12

for a fixed solvent configuration to obtain an approximation. These coordi-

nates are further refined using the Polak-Ribiere version of the conjugate gra-

dient methods. 2 ,"3 For the steepest descent and conjugate gradient methods

one desires a smooth potential energy surface. 14 To this end, the long-range

interactions were calculated using Ewald summation to avoid discontinuities

in the energy and its gradient, as would appear in other approaches such as

those employing spherical truncation.

The conservation of energy by the adiabatic dynamics procedure outlined

here is easily demonstrated. The time derivative of the expression for the

total energy E of the system must vanish. Formally, the total energy of a

classical ion-water system is,
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E - mr 1r + !mi2 + Vw(rw) + VI(rw, rj),

where mi, ,t are the mass, velocity and acceleration of the ion, and

mOI ra Ii, are the mass, velocity and acceleration of each one of the wa-

ter molecule sites a. Vw and V are the solvent-solvent, and ion-solvent

interaction potentials respectively.

The time derivative of the energy is,

d = m r-i, + V1 V-i 1 + Z_[mJ'".i + (V (Vw + Vi).i%)].
dto

For Newtonian dynamics, substitution of the accelerations by the following

expressions,

mr

cancels out both the ionic and wcater terms of the energy derivative expression

yielding a vanishing result. Using adiabatic dynamics for the ion, it = 0 and

VtV = 0, so that the time derivative of the energy vanishes in this case as

well.

All simulation conditions were chosen to be exactly the same as the classi-

cal MD cases. The starting configurations were obtained from the respective

classical simulations, and used to equilibrate the systems.
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C Quantum molecular dynamics simulations

For purposes of comparison, a Quantum Molecular Dynamics simulation

of the excess electron in water was performed, analogous to that previously

reported fromn this laboratory.5

The algorithm, as well as the electron-water pseudopotential utilized, are

presented in Ref.15; the only modificatioi we made to the algorithm is the

implementation of the Ewald method tG calculate long-range interactions,

instead of using spherical truncation. This was done to preserve, as far as

is possible, equivalent conditions for all ion-water systems considered in this

study.

III SOLUTE-WATER PAIR POTENTIALS

Our goal in this study is to delineate the properties of the system that

are responsible for the enhanced diffusion rate of the electron compared to

simple atomic ions. One contribution already discussed is a difference in

dynamical response. However, differences in the solute-solvent interaction

potential must also be considered. As will be seen below, these differences

are also essential.

In this section, we describe three models considered as caricatures of the

solvated electron.

From previous path integral studies, 16 17 it is known that the size of the

simulated e-q solute is comparable to that of a halide ion, with a radius

7



intermediate between C1- and Br-. In addition to the structural features of

solvation, e-q roughly resembles Br- in terms of their solute-solvent energies;

therefore, we use Br- as our reference solute for this study.

Each one of the three electron-water pair potentials studied incorporates

a set of characteristics deemed potentially significant in an attempt to mimic

the electronic behavior in water. The parameters corresponding to each

model are given in Table II. Figure 1 shows the values of the total pair

potential for geometries with the ion center collinear with either the OH

bond direction (Fig.la) or the HOH bond angle bisector (Fig.lb).

A Model 1

The first potential function studied is of a simple Lennard-Jones ion type.

The ion is represented by a negative point charge, and the Lennard Jones

parameters used are those given by Heinzinger.' 8

An important limitation of Model 1 results from the fact that the effective

short range interaction between the solvent and the solute is fundamentally

different for Br- and e-q. For the halide, the electronic distribution is rela-

tively rigid (being determined by the ionic nucleus), so that a rapidly varying

and strong repulsion exists when the solutte and solvent wavefunctions over-

lk-o. For the electron, the distribution is determined only by the solvation

structure, so that one expects a balance between the alternative energetic

costs of interpenetration and confinement of the excess electron.

In the following two models (Models 2 and 3), we assume as a guiding

8



concept the simple view that the distance dependence of the solute-solvent

potential arises from confinement alone. The premise is that the degree

of electronic interpenetration is not strongly dependent on center of mass

separation.

B Model 2

The second potential examined is comprised of a simple Coulombic term

identical to that used in the first potential, and a "soft" repulsive potential.

This latter, nonelectrostatic, portion of the ion-water interaction is described

using a repulsive term of the form:

AA + D exp(-Pr 2), (1)Br 2 + C exp(atr)

A,B,C,D,a, > 0.

The motivation for choosing this functional form and the values of the

parameters listed in Table II are as follows:

* The position of the pair potential minimum is chosen to coincide with

that of Model 1, the Coulomb + Lennard-Jones potential (rm,, = 3.32A),

for the bond oriented approach.

• The potential should mimic the quite different repulsion between water

and an excess electron compared to an atomic ion described above. If we

think about this in terms of a particle in a box, the molecules surrounding

the quantum particle would be the determinants of the box size. As the

9



energy is proportional to the inverse square of the linear dimension of this

box, we are led, at relatively small bromide-water distances, to a form varying

as 1

• At bromide-water distances beyond the first solvation shell, the poten-

tial should decay rapidly; this feature is needed to maintain a short-ranged

repulsive interaction. We accomplish this via the exponential in the denom-

inator of the first term in Eq.(1).

* The second term in the potential function becomes significant only at

very small ion-solvent distances, and is added to ensure that the potential

maximum is high enough to allow practical implementation along with a

(singular) Coulombic term.

C Model 3

The third potential studied here includes also a modified Coulomb inter-

action superimposed on a soft repulsive potential of the type introduced in

Model 2. The modification of the Coulomb potential used is designed to more

realistically describe the electrostatics associated with the distributed elec-

tronic charge. The corresponding repulsive term is then adjusted somcwlkt,

to produce a potential which has comparable strength.

It has been shown that the ground state of an excess electron in polar

solvents is a bound state.2b The typical ground-state wavefunction in water

resembles, to a good approximation, a Gaussian distribution. 19 It is also

known that the tail of the electronic wavefunction does penetrate the first

10



shell of water molecules around the electron. Using our pseudoclassical model

we can introduce this effect by representing the ion as a Gaussian charge

distribution, instead of a simple point charge. The electron density, p(r), is

given by
3

p(r) = q ( j.--) exp - ,

where is the width of the Gaussian.

The value of the width used here is based on the average radii of the

electronic wavefunction obtained from previous path integral studies, 19

< Jp(r)rdr >= 1.88A

< ] P(r)r dr >I= 2.05A.

From these two equations, C is estimated to be 1.18A.

The parameters for the repulsive part of the potential are modified slightly

to reproduce the potential described in Section IIIB near the minimum for

the bond oriented approach (see Table II). In this case, the exp(-3r 2) factor

is not needed.

The final potential function is given by,

V(r) -- q(Br-)q(H2Osite) erf (r A

r ;r2 r+ VrJ + C exp(car)'

where erf(x) is the error function.

We note that the introduction of the solvent penetration of the elec-

tronic distribution only for the purpose of evaluating the electrostatic forces

11



is reasonable only if the energetic contribution due to the electronic inter-

penetration is not very dependent on the configuration of molecules in the

first solvation shell.

Further, we must emphasize that Model 2 and Model 3 make explicit and

implicit use of knowledge about the structure of hydrated electron. Hence,

they are not intended to be a priori models, and, for example, are only po-

tentially pertinent at ambient temperature and solvent density. This aspect

is discussed further in the Conclusions.

As can be seen in Fig.1, the pair potentials for the three models differ

significantly. In particular, both Models 2 and 3 show considerably less

short ranged repulsion than Model 1, by design, although both also manifest

somewhat shallower absolute binding. It is especially interesting to note the

relatively large difference in angular dependence between Model 2, the point

charge model, and Model 3, the model incorporating electronic penetration.

IV RESULTS AND DISCUSSION

In this section, we compare and contrast the results of the classical and

adiabatic simulations of the hydrated bromide ion and those of the eq sim-

ulations.

Various dynamical properties of each species are examined to determine

the effects of different interaction potentials on ion mobility.

This information is then used to infer the features critical to transport for

the hydrated electron. Structural and energetical properties of the system3

12



are also presented as complementary information in order to obtain a better

understanding of the character of the different models.

A Diffusion

In a molecular dynamics simulation, the self-diffusion coefficient D of a

particle may be calculated in at least two ways. The first method utilizes

the Green-Kubo relation which gives the diffusion coefficient in terms of the

velocity autocorrelation function. A second approach monitors the mean

square displacement of the particle as a function of time and uses the well-

known Einstein relation,

1
D = lim1 < Ir(t) - r(O)12>, (2)

where r(t) is the coordinate of the particle at time t, to derive D.

The Einstein relation appears preferable to the calculation of the veloc-

ity correlation function approach." We use the Einstein relation here. The

simulation results obtained here and experimental values are given in Table

III.

The values for D given in the table are obtained by linear least squares

fit of the mean square displacement over the time interval from 1.0 to 2.0

ps. We are most interested in the qualitative differences among the ionic

diffusion coefficients obtained, and we do not place heavy emphasis on the

precise values. However, based on our experience, particularly with the longer

simulations of Model 2, we believe that the values given are accurate to about

13



10%.

We first introduce the results obtained for the solvated electron, since

they will be used as a reference point in the analysis of the other models

studied here.

We analyze the dynamics of the electron semiclassically by monitoring

the time dependence of the expectation value of the position of the center of

mass. This is valid since the electron is well localized at all times.

The mean-square displacement of the electronic center of mass is dis-

played in Figure 2a, along with the mean-square displacement for the diffu-

sion of all water molecules in the simulation cell. For the sake of comparison,

we also show results for the classical bromide ion (Model 1; see Section

IIIA). Figure 2b displays the short-time (non-diffusive) regime for the same

species. Figure 3 shows the relative probability for renter-of-mass displace-

ments for each particle during time intervals of 20 (Fig.3a) and 200 (Fig.3b)

femtoseconds. The results for the excess electron agree with those obtained

by Schnitker and Rossky.s

As can be seen from Table III, the diffusion coefficient of bromide obtained

here is in good agreement with the experimental value, 21 contrary to the

result obtained from Schnitker and Rossky's calculations.' The individual

values of D, and of DB,- are each within about 20% of experiment. Further,

the D ratio we obtain (1.6) is in reesonable agreement with the ratio
DBr-

obtained from experimental results (2.1).21,22 We note that the value for

DH2 O is more than 50% too high (see Table III), as has been found for a

14



number of models. 9'2 3 The possible implications of this and of the apparent

coincidence of the electron and solvent diffusion coefficients in the present

calculation are discussed further below.

The much better agreement with experiment obtained here for the atomic

ion appears to be a direct result of the introduction of the Ewald treatment

of long range forces in place of the smooth truncation at a finite distance of

about 8. s Corroborating results have appeared elsewhere,' 2 ' 23,24 although

the large effect does not appear to have been emphasized by others. The

enhancement in the diffusion coefficient due to the use of Ewald summation

is about a factor of three. This separate aspect of the ion transport problem

will be the subject of a separate report. Here, we use an Ewald treatment

throughout, as noted earlier.

We now consider the results obtained for the model potentials introduced

in Section III.

Figure 4 shows the ionic mean-square displacement and, Fig.5, the relative

probability for center-of-mass displacement using Model 1 (Section IIIA).

Each graph displays the results for the classical ion, for the corresponding

adiabatic ion case, and for the solver' s well.

It is evident from the behavior ext, 1uited by the solute that adiabaticity

alone does not lead to an enhancement of a particle's diffusion rate, in con-

trast to what was previously suggested. 5 7 Comparing the ionic short-time

behavior illustrated in Figures 4b and 5 with the electron results in Figures

2b and 3a, we can see that the instantaneous response of the ion does not

15



fully reproduce the characteristic motion exhibited by the excess electron,

although the trend is correct.

The very short time behavior of the ion, reflected in Figure 4b, suggests

that the steep repulsive ion-solvent interaction (see Fig. 1) causes the ion to be

repelled before being able to fully follow the changes in solvent configuration.

This speculation, in fact, led us to examine the other interaction poten-

tials, with physically softer short-range ion-solvent repulsive components.

For Model 2, the ionic short-time behavior of the adiabatic case, displayed

in Figure 6b, is in good agreement with the excess electron behavior. The

probability distribution for displacement of the particles during a time span

of 20 femtoseconds (Fig.7) exhibits behavior more closely analogous to the

electron as well. For the ionic adiabatic dynamics, the distribution is shifted

to larger distanices and is asymmetric, unlike the sharp distribution observed

for the classical ion. Nevertheless, from Figure 6a and Table III, it is evident

that the softness of the repulsive part of the potential is not sufficient to fully

explain the enhanced electronic diffusion rate.

It is also important to note that the classical calculations employing the

softer potential characterizing Model 2 do not exhibit any significant en-

hancement in the diffusion rate or short time displacement over the normal

ionic case. Further, we note that while Models 2 and 3 are characterized by

somewhat weaker ion-solvent interactions than is Model 1 (see Fig.1; Table

III). The substantial similarity in diffusion coefficients obtained with Model 1

and Model 2 indicates that the absolute strength of the interaction potential

16



is not a critical factor in this regard.

We now turn to further modification of the pseudoclassical model. As

described above, the third and final model incorporates a distributed charge

distribution for the ion which is, in principle, more realistic. In Model 3, we

replace the point charge ion by a Gaussian charge distribution of constant

width, and adjust the parameters corresponding to the short-ranged compo-

nent in order to preserve a similar soft repulsive potential as well (see Section

IIIC).

We can verify that the model used mimics the effect of the true distributed

charge a posteriori. Fig.8 compares the actual average electrostatic solvent-

solute interaction as a function of separation for the models of Br-, e-q,

and the pseudoclassical Model 3. It is clear that Model 3 manifests results

remarkably similar to the electron, and significantly different from those for

the conventional ion.

Figures 9 and 10 show the results obtained with Model 3. We first note the

fully classical(inertial) treatment of Model 3 yields only a small increase in D

(Table III), amounting to only about 15% over the Lennard-Jones ion (Model

1). However, for the adiabatic dynamics of Model 3, not only does the short-

time behavior of the ion closely mimic that of an electron (compare Fig.2b

and 3 with Figures 9b and 10), but there is also a significant enhancement

of the ionic diffusion rate when comparing the classical and adiabatic cases

(compare Fig.2a and Fig. 9a; see Table III). The ionic diffusion is increased

by a factor of about 1.5. The adiabatic Model 3 yields an increase over the

17



classical Lennard-Jones ion (Model 1) of 1.7, actually slightly greater than

the factor of approximately 1.6 for the _D ratio, from quantum simulations.
DBr-

The probability distributions for the ionic displacements and solvent for

a time span of 200 femtoseconds (Figure 10b) agree remarkably well with

the probability distributions shown in Figure 3b, again indicating that there

are no rapid translations( "hops") of the solute over relatively large distances,

and that this mechanism does not need to be invoked to substantially explain

the ionic and/or electronic motions.

It is reasonable to attribute the additional enhancement of the diffusion

coefficient for Model 3 over Model 2 to a decrease in rigidity of the solute-

solvent complex. Such explanations have been introduced in discussing sim-

ple atomic ion diffusion,24 and it is evident from Fig.8 that the electrostatic

component of the energy is more slowly varying. Further, Fig.1 shows that

in the penetrable model, the configurations with dipole aligned orientations

are relatively considerably more stabilized. (Nevertheless, the structure of

the solution remains dominated by bond oriented molecules, as will be shown

below). Hence, we assign the principle difference in such rigidity here to the

angular dependence of the interaction.

B Velocity autocorrelation functions

To obtain further insight into the microscopic dynamics of the species

studied here, we have calculated for each case the velocity autocorrelation

function, defined as

18



z(t) = < v(t) v(0) > (3)
< Iv(0)12 >

where v(t) is the velocity of the particle at time t.

For the adiabatic calculations, including those for the electron itself, the

effective solute velocities must be obtained indirectly. The implicit velocities

are obtained using the central difference expression,

V(t) = r(t + 1) - r(t - 1)

2At (4)

In Figure 11, we compare the velocity autocorrelation function of the clas-

sical bromide with the adiabatic velocity correlation function for the excess

electron and for Model 3. The differences in appearance among the func-

tions Z(t) for the different models are relatively small, so that in the figure

(Fig. ib) we show only one of the adiabatic pseudoclassical models.

The electron exhibits rapid velocity reversal, and a small high frequency

modulation associated with the high-frequency solvent polarization fluctua-

tions. These fluctuations are related to the rapid molecular librations in the

hydrogen bonded solvent which also characterize the short-time dynamics of

the excess electron (Figure 2b).

In contrast, the classical bromide ion shows no recoil and is remarkably

Brownian in appearance. This picture is somewhat different from the oscil-

latory motions that have been reported2 4 for the lighter and smaller ions F-

and C1-. These have been rationalized as the result of the ions "rattling" in
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a relatively rigid solvent cage.24 However, the trend with increasing ion mass

is consistent, and one cannot rule out a contribution due to system size; the

much earlier calculations employed a solvent system size of only 64 or 125

molecules, compared to the present 500 molecules.

The equilibrium average of v2 equals 3kBT by the principle of equipartition

of energy, where m represents the mass. It is interesting to use this relation-

ship to examine how the apparent effective mass varies with the interaction

potential for the adiabatic cases.

For the electron we find (all values in amu) 0.8, while for Model 1 through

3 we find 5.0, 1.6, and 1.5, respectively. For Models 2 and 3 the apparent

kinetic masses are close to that of the electron (and also that of the solvent

proton), while for the Lennard-Jones ion it is substantially larger. We note

that the fact that this effective, kinetic, mass corresponds to that of the

proton does not imply that the ion is following the solvent translationally.

The latter might also be inferred from the results for the mean squared

displacement for Model 3 and e-q, and this will be discussed further below.

However, it is clear that for Model 2 the ionic diffusion is considerably slower

than that of the solvent, or of the Model 3 ion, while the effective mass is

comparable to Model 3, in accord with our comments above.

C Structure and energetics

The average electronic binding energy(-2.72 eV), and radius of gyration

(2.14 A) obtained here are in agreement with previous simulations of e-q.1'7
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Due to the fact that aspects of the electronic kinetic energy are incorpo-

rated into the model potentials of Models 2 and 3, a direct comparison of

the absolute energetics of the pseudoclassical models to the quantum case is

not possible. However, for completeness we include in Table III the average

potential energies for all cases studied.

Of more interest are the structural features. which are directly compara-

ble. This is done in Fig.12. The comparison is quantified further in Table

IV.

Figure 12a shows the radial pair correlation functions between the elec-

tronic center of mass, and either oxygen or hydrogen nuclei of the solvent.

The graphs exhibit the established bond oriented type of solvation, and the

strongly broadened peaks, characteristic of the e-q structure.,6,17

The radial distribution functions of the solvated ion for the other models

studied here are shown in Fig.12b-d. The only difference observed between

the functions obtained for the classical, and the adiabatic cases is that the

latter show somewhat more structure for the first layer peaks. This behav-

ior is likely related to the fact that the solute-solvent potential energies are

somewhat more positive for classical as compared to adiabatic dynamics (see

Table IN'. For simplicity, we show only the pair correlation functions corre-

sponding to the adiabatic calculations.

Figure 12b, corresponding to Model 1 shows radial correlation functions

that are typical of a hydrated ion, with a sharply defined solvation layer.

For Model 2, the improvement in mimicking the structural features of e-q
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is striking (Fig. 12c). The correlation functions exhibit a much more diffuse

nature, characteristic of the electronic solvation structure.

Figure 12d shows the results obtained for Model 3. The peaks are further

broadened and the maxima and minima are decreased in height; the second

ion-oxygen peak is slightly shifted outward (see Table IV). Overall, Model

3 is remarkably good at mimicking the structure exhibited by the solvated

electron.

V CONCLUSION

Using a pseudoclassical technique that mimics the adiabatic dynamical

response of a solvated electron, we have studied the diffusive behavior of

bromide-like ions in water for different solute-solvent potential models. The

dynamics incorporates an ion that responds instantaneously to the rearrange-

ments of the solvent configuration, and lacks any classical inertial behavior.

The results obtained were used as a tool to elucidate the origins of the trans-

port behavior for a localized solvated electron.

We have shown that the enhancement of the electronic diffusion rate in

the quantum simulations over the rate exhibit--d by classical ions can be at-

tributed only partially to the adiabatic dynamics of the excess electron per

se, although it is essential. We find that specific features of the solute-solvent

interaction potential are als',, essential to the description of the mobility of

the hydrated electron. These features include, first, the relatively weak forces

that derive from the variation of the quantum kinetic energy with the spatial
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confinement of the excess electron. The kinetic energy effect can be modeled

by a soft repulsive solute-solvent interaction and it is manifest primarily in

the non-diffusive electronic motion on time scales of 0.2 ps and less. Sec-

ond, the electrostatic interaction of the electron and solvent is much more

realistically described when one allows partial penetration of the excess elec-

tronic distribution by molecules of the first hydration shell. This second

feature predominantly contributes to the enhancement of the (longer time

scale) electronic diffusion rate. We have attributed this latter effect to the

orientation dependence of electron-solvent interaction.

In addition to dynamical properties, the model that best reproduces the

electron mobility observed from quantum mechanical calculations also mimics

the simulated solvated electron solvation structure very well.

Before completing the discussion, a possible alternative view of the present

work should be noted. As pointed out earlier, although the electronic and

ionic diffusion coefficients are mimicked well by the present calculations, the

electron and solvent are observed to diffuse at the same rate; experimentally,

the electron diffusion coefficient is about twice that of water. Based on this

coincidence of electron and solvent diffusion rates, one possible interpretation

of the simulated data discussed here is that the electron is translationally fol-

lowing the solvent in both the pseudoclassical and quantum simulations. A

tendency toward this view can be readily amplified by the physical picture

associated with adiabatic electronic motion.

Such a conclusion would have profound implications for this, and all re-
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lated, work. Implicitly, the electronic diffusion rate observed in the present

simulations would then be only half what it "should" be in SPC model wa-

ter for a realistic electronic solute. Correspondingly, one would be forced to

conclude that the quantum simulations of electrons in water are lacking in

some fundamental way. On the basis of the data presented in the present

paper, we cannot categorically rule out this possibility. However, we believe

that this observation of similar diffusion coefficients is basically accidental, a

result of limitations of the SPC model.

We note first that the coincidence of two diffusion coefficients is not strong

evidence for a physical picture. The diffusion constants of water and Bromide

are nearly the same experimentally (see Table III), and such a physical picture

would not be invoked in that case. Further, one would then need to ask why

the other adiabatic ion models do not follow the solvent.

In addition, we note that such processes as hopping are not restricted by

the methods we or others6 employ in the quantum simulation, except for the

restriction to electronically adiabatic dynamics. Non-adiabatic contributions

are not plausible for this case, where the energy gap to excited states is

always large. 16 Hence, the missing physical effect that would be required for

this alternative interpretation is not self-evident. Nevertheless, it remains

for further simulations with other water models to establish an unequivocal

conclusion with respect to this issue.

Finally, the approach and results presented here suggest several further

investigations. These include the use of the present model to elucidate the
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* I

apparently unusual thermodynamics of e'-q,25 and the temperature depen-

dence of diffusion rates. 2 Although the latter phenomenon may depend on

the variation of the pseudoclassical model parameters with temperature, it

is reasonable to anticipate that such variation would not be a leading order

effect. In addition, similar methods could, in principle, be applied to the

study of electronic diffusion in simple alcohols, in order to test hypotheses22

for contrasting behavior in that case. Although here we have used the quan-

tum simulation as a source for the parameters of the pseudoclassical model,

an analysis of experimental spectral data would have yielded very similar

parameters, 28 and that approach may allow an a priori generalization to

other systems.
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Table I: Time intervals of simulations in picoseconds

Br-/H 20 e-'q

Model 1 2 3

Classical 100 60 40

Adiabatic 40 100 40 42
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Table II: Parameters corresponding to the non-electrostatic component of
the interaction potential functions.

Model a f A B C a D
(1) (kJ/mol) (kJ/mol) (1-2) (A - ') (kJ/mol) (A- 2)

1 4.16 0.214987 - - - - - -

2 - - 957.69 0.921 0.005 2.733 20000.0 1.513

3 - " 957.69 3.420 0.01 2.733 -
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Table III: Solute and solvent self-diffusion coefficients and average potential
energies.

D (10 5'cm 2 /sec) U (kJ/mol)

Model classical adiabatic classical adiabatic

1 H 2 0 - 4.1 -41.2 -41.1
Br- 2.5 2.9 -604.0 -612.0

2 H 2 0 - 4.0 -41.3 -41.3
Br- 2.7 3.0 -512.3 -515.4

3 H 2 0 - 4.0 -41.4 -41.3
Br- 2.9 4.3 -505.7 -518.0

QMD H 2 0 - 4.1 - -41.1
e- - 4.0 - -508.6

Experiment e- - 5.Oa -

Br- 2.1'

H 2 0 2.3c---

a Ref.22.
bRef.2 1.
" Ref.27.
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Table IV: Properties of peaks in radial pair correlation functions between
solutes and oxygen (upper rows) or hydrogen (lower rows) nuclei for adiabatic
cases.

1st Maximum 1st Minimum 2nd Maximum

Model Position (A) Height Position (A) Height Position (A) Height

1 3.3 4.0 4.0 0.47 5.0 1.2

2 3.3 1.8 4.1 0.56 5.0 1.3

3 3.3 1.7 3.9 0.70 4.8 1.2

ea' 3.3 1.4 3.9 0.91 4.5 1.2

1 2.3 3.3 3.2 0.25 -

2 2.3 1.6 3.1 0.33

3 2.2 1.6 3.0 0.48

eaq 2.3 1.2 3.0 0.64
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Figure Captions

FIG. 1. Solute-solvent pair potential as a function of the bromide-oxygen

distance. Model 1 (solid line), Model 2 (dashed line), Model 3 (dotted line).

Horizontal and vertical axes in units of Ai and kcal mo1-', respectively. (a)

ion collinear with the OH bond direction; (b) ion collinear with the HOH

angle bisector.

FIG. 2. Mean-square displacement (msd) of centers of mass as a function

of time for excess electron (dashed line) and water (solid line), from QMD

simulation, and corresponding results for bromide ion (dot-dashed line) from

classical molecular dynamics simulation using Model 1. Vertical axis in A2,

time in ps. (b) Shows the short-time dynamics on an expanded scale.

FIG. 3. Relative probability for center-of-mass displacements for solutes

and solvent. (a) Elapsed time At = 20 fs. Excess electron (dashed line),

water (solid line), classical bromide, Model 1 (dot-dashed line); (b) At = 200

fs. Excess electron (dashed line), water (solid line).

FIG. 4. Mean-square displacement (msd) of centers of mass as a function of

time using Model 1. Adiabatic bromide ion (dashed line), water (solid line),

and classical bromide ion (dot-dashed line). Vertical axis in 22, time in ps.

(b) Shows the short-time dynamics on an expanded scale.

FIG. 5. Relative probability for center-of-mass displacements for solutes
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and solvent using Model 1, for a time interval of 20 fs. Adiabatic bromide

(dashed line), water (solid line), and classical bromide ion (dot-dashed line).

FIG. 6. Mean-square displacement (msd) of centers of mass as a function

of time using Model 2. Otherwise as in Fig. 4.

FIG. 7. Relative probability for center-of-mass displacements for solutes

and solvent using Model 2. Otherwise as in Fig. 5.

FIG. 8. Average Coulombic interaction energy between a solvent molecule

and the ionic solute as a function of the separation of the solvent oxygen

atom and the ionic center of mass. Classical bromide, Model 1 (solid line);

excess electron (dotted line); Gaussian charge model, Model 3 (dashed line).

For Models 1 and 3, the results shown are from the adiabatic simulations.

Horontal and vertical axes in units of A and kcal mo1- 1, respectively.

FIG. 9. Mean-square displacement (msd) of centers of mass as a function

of time using Model 3. Otherwise as in Fig. 4.

FIG. 10. Relative probability for center-of-mass displacements for solutes

and solvent using Model 1. (a) Elapsed time At = 20 fs. Adiabatic bromide

(dashed line), water (solid line), classical bromide ion (dot-dashed line); (b)

At = 200 fs. Adiabatic broiaide (dashed line) and water (solid line).

FIG. 11. Velocity autocorrelation function for the ionic center of mass.

(a) Electron (dashed line); classical bromide ion (solid line), Model 1; (b)

adiabatic bromide ion (dashed line), classical bromide, Model 3 (solid line).
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FIG. 12. Solute-solvent pair correlation functions between solute center of

mass and either solvent oxygen (solid line) or hydrogen (dotted line) from

adiabatic simulations. (a) electron; (b) Model 1; (c) Model 2; (d) Model 3.
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